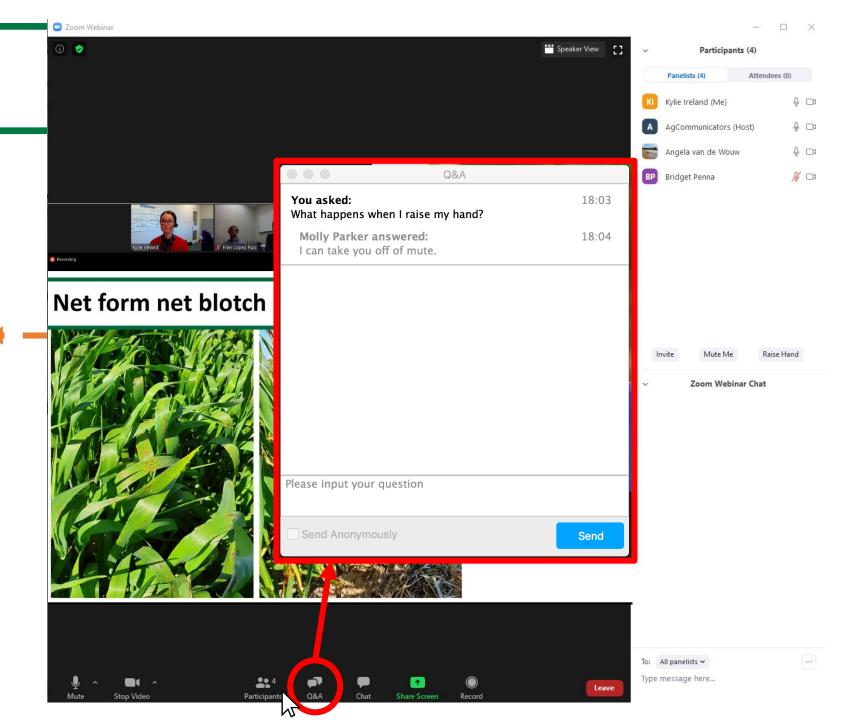

Housekeeping / Ground Rules



- Everyone should automatically be muted. Please keep on mute.
- To ask a question:
 - Go to the Q&A window in the bottom of your screen.
 - Click on Q&A, open the window and enter your question.
 - Your question will then be posted ready to be answered. You can also tick "send anonymously" if you don't want your name attached to your question.
- In the unlikely event of webinar hacking, the webinar will be immediately shut down and a new webinar link will be sent to you via email within 10 minutes.
- Please be kind ©

How to Q&A

Australian Fungicide Resistance Extension Network

Regionally specific resources and training to help growers and advisors understand the status, risks and management of fungicide resistance in Australian grains.

Develop and deliver:

- Fungicide resistance management guide
- Workshops, info sessions & webinars
- Factsheets, updates & email alerts

Fungicide resistance in NSW/QLD

Dr. Steven Simpfendorfer

Update on winter cereal disease management in 2020 – NSW

Dr. Lisle Snyman

2020 season QLD – changes and challenges

Prof. Levente Kiss

Management of fungicide resistance in Queensland grains crops

Update on winter cereal disease management in 2020

Steven Simpfendorfer

DS Bennett, Lockhart

DS Bennett, Boggabri

DS Bennett, Dubbo

New stripe rust pathotype 198 E16 A+ J+ T+ 17+

Vic and Tas - 2018 NSW x4, Vic x2, Qld x1 -2019

Wagga Yr NVT nursery 2019
Andrew Milgate

LRPB Trojan

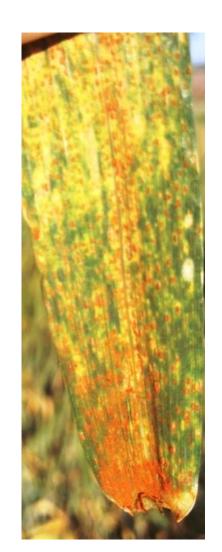
New stripe rust pathotype 198 E16 A+ J+ T+ 17+

Variety	Yr198 resistance
DS Bennett	S
Illabo	MR
EGA Wedgetail	MS
LRPB Trojan	MSS
DBA Lillaroi	MS
LRPB Lancer	MR
LRPB Flanker	RMR

Wagga Yr NVT nursery 2019
Andrew Milgate

Durum

LRPB Trojan


Fungal pathogens change! ***

New Lr24 pathotype of leaf rust

Variety	Yr198 resistance	Lr24 resistance
DS Bennett	S	SVS
Illabo	MR	S
EGA Wedgetail	MS	MSS
LRPB Trojan	MSS	MS
DBA Lillaroi	MS	RMR
LRPB Lancer	MR	MS
LRPB Flanker	RMR	MSS

Fungal pathogens change!

New Lr24 pathotype of leaf rust

Variety

Yr198 resistance

Lr24 resistance

Fungal pathogens evolve to overcome genetic resistance

Why not also fungicides?

LIMIT SELECTION PRESSURE! DON'T jump at shadows!

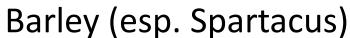
LIMIT SELECTION PRESSURE!

DON'T jump at shadows!

Fungicides DO NOT fix herbicide damage Fungicides also DON'T fix nutrient issues

First: Get diagnosis right! 'This is not a disease'

Think before you spray!


Fungal diseases DO NOT concentrate toward leaf tips!

You can get a second opinion 0439581672

Reality

Physiological spots Not disease

No fungal pathogens recovered from these lesions

Spot form of net-blotch Lesions – leaf disease

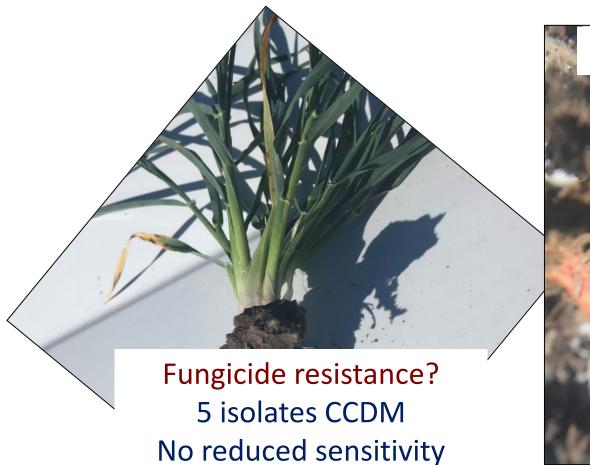
Spores (conidia) of Pyrenophora teres recovered from these lesions after incubation in humid chamber

Keep potential losses in perspective!

Grafton 2018 Natalie Moore (NSWDPI)

Keep potential losses in perspective!

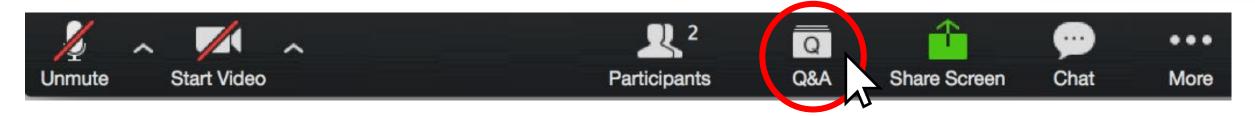
Grafton 2018
Natalie Moore (NSWDPI)



Systiva (fluxapyroxad)

Ph

Photos: Gary Onus


Assistance is 'free' 0439 581 672

Keep the questions coming!

To ask a question:

- Go to the Q&A window in the bottom of your screen.
- Click on Q&A, open the window and enter your question.
- Your question will then be posted ready to be answered. You can also tick "send anonymously" if you don't want your name attached to your question.

2020 season QLD – changes and challenges

Lisle Snyman

Net Form Net Blotch

- Occurs regularly in NR crops
 - > 2016 (33), 2017 (35), 2018 (1 HRF), 2019 (7)
- Three main pathotypes NB85, NB73, NB50
 - Virulent on Maritime and Urambie
 - No new pathotypes 2018 & 2019
- Widespread cultivation of variety -> increase in virulent pathotypes
 - Commander, Shepherd & Compass Selection pressure
 - Commander & Shepherd S
 - Compass MRMS APR
- Seed- and stubble-borne

Spot Form Net Blotch

23 samples SFNB (2019)

- Dalby, Chinchilla, Bundaberg,
 Childers, Emerald, Pittsworth
- NNSW: Croppa Creek Moree

	and the same of
	4

Variety	SFNB	NFNB
Compass	MRMS	MRMS/MSS
Commander	MSS	MSS
Fathom	RMR	MRMS/S
GrangeR	SVS	MRMS/SVS
Hindmarsh	SVS	MS
La Trobe	SVS	MS
RGT Planet	S	S/MRMS
Rosalind	MSS	MRMS
Scope CL	MSS	MSS
Shepherd	SVS	SVS/MSS
Spartacus CL	SVS	MS
Westminster	S	S/MRMS

Disease On 'Watch List' For Barley Growers This Season

Author: Toni Somes | Date: 06 Aug 2019

Growers are being advised to monitor crops for spot form of net blotch (SFNB). DAF pathologist Lisle Snyman said incidents of the disease were unexpected given the dry conditions but being moisture-stressed may have made some crops more vulnerable this season. Photo Hugh Wallwork.

Powdery Mildew

Pathotypes

- MlLa virulence detected in QLD 2014
 - 2020: Rosalind, Spartacus CL
- no new virulence
- mlo resistant to all isolates

Resistant varieties

Fairview (*Mla13*), Flinders (*Mla1*), Granger (*mlo*),
 Oxford (*St*), RGT Planet (*mlo*), Scope (*Mla7*),
 Westminister (*mlo*)

Resistance breakdown

 Commander, Compass, La Trobe (MlLa), Shepherd (Mla3)

Stem rust

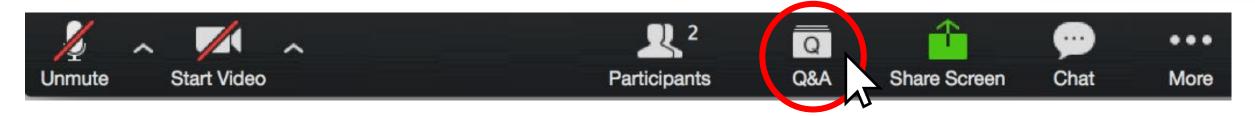
- Outbreak on Western Downs 2018
 - Banks, Compass, Rosalind, Bottler, Grout, Shepherd,
 Commander, RGT Planet, Spartacus CL
- Barley
 - Wheat stem rust (P. graminis f. sp. tritici)
 - Rye stem rust (P. graminis f. sp. secalis)
 - Scabrum rust (hybrid)
 - Common wheat grass (Elymus scaber/Agropyron scabrum)
 - 2018 survey rust infection at multiple sites

Scabrum rust

Variety	2019 QLD NVT	Variety	2019 QLD NVT
Hindmarsh	MSS	Explorer	SVS
La Trobe	MSS	Fleet	SVS
Litmus	MSS	Flinders	SVS
Alestar	S	Gairdner	SVS
Baudin	S	Granger	SVS
Biere	S	Grout	SVS
Compass	S	Lockyer	SVS
Fathom	S	Mundah	SVS
Flagship	S	Navigator	SVS
Keel	S	Oxford	SVS
Maltstar	S	RGT Planet	SVS
Rosalind	S	Schooner	SVS
Scope	S	Topstart	SVS
Spartacus CL	S	Urambie	SVS
Banks	SVS	Westminster	SVS
Bass	SVS	Bottler	VS
Brewstart	SVS	Charger	VS
Capstan	SVS	Fairview	VS
Commander	SVS	Shepherd	VS

Variety Responses 2019 NVT

- Favourable conditions
- Available inoculum
- Wheat not host Scabrum rust
- Biotroph pathogen not stubble-borne
- Most varieties vulnerable
- Susceptible varieties increase inoculum pressure
- Early fungicide application not control disease
- Fungicide at 1st sign of disease



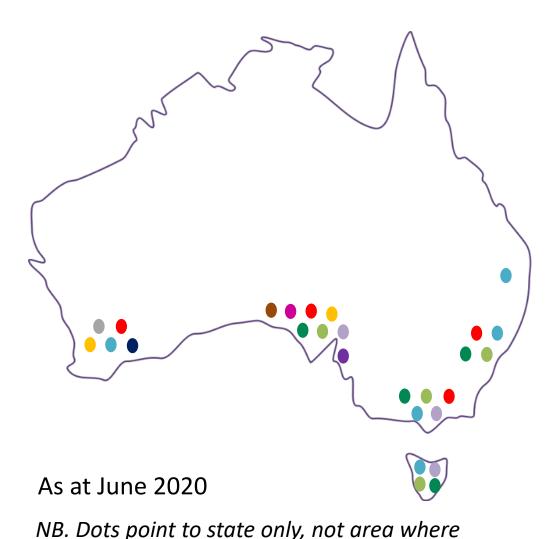
Data available on NVT website and 2020 QLD Variety Sowing Guide

Keep the questions coming!

To ask a question:

- Go to the Q&A window in the bottom of your screen.
- Click on Q&A, open the window and enter your question.
- Your question will then be posted ready to be answered. You can also tick "send anonymously" if you don't want your name attached to your question.

Management of fungicide resistance in Queensland grains crops


Prof. Levente Kiss
USQ Centre for Crop Health

Fungicide resistance in Australian grains crops

resistance was discovered.

Disease and fungicide group

L, RS, R • Barley Powdery Mildew – Group 3 (DMI)

L, RS, R • Barley Net Form Net Blotch – Group 3

L, R • Barley Net Form Net Blotch – Group 7 (SDHIs)

RS, R • Barley Spot Form of Net Blotch – Group 3

RS • Wheat Powdery Mildew – Group 3

L, R • Wheat Powdery Mildew – Group 11 (strobilurins)

RS • Wheat Septoria tritici – Group 3

L • Canola Blackleg – Group 2 (MAP-kinase)

RS • Canola Blackleg – Group 3

L • Ascochyta Blight of Lentil – Group 1 (MBC)

Botrytis Grey Mould of Chickpea – Group 1

L = Lab detection RS = Reduced sensitivity R = Resistant

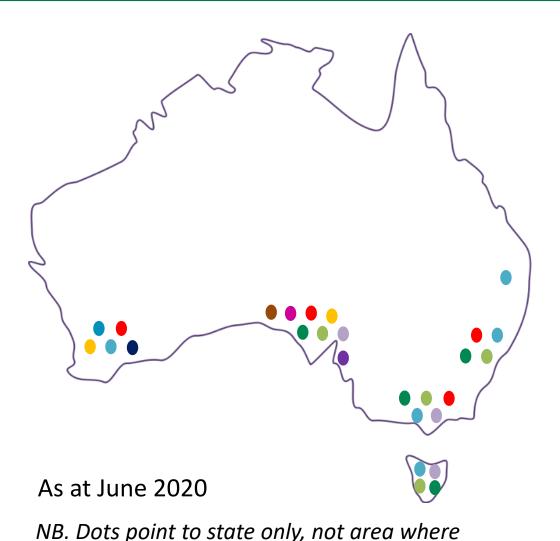
Fungicide resistance terminology

Term	Impact on fungicide use
Sensitive	Still works
Reduced sensitivity	Might still work okay
Lab Confirmation Required	May need to use higher ratesHigher risk of developing resistance
Resistant	Doesn't work – avoid use Field failure detected
Lab detection	Measurable decrease in sensitivity when fungus cultured in the lab ± mutation detection

Fungicide resistance detection

To detect reduced sensitivity or resistance to a fungicide:

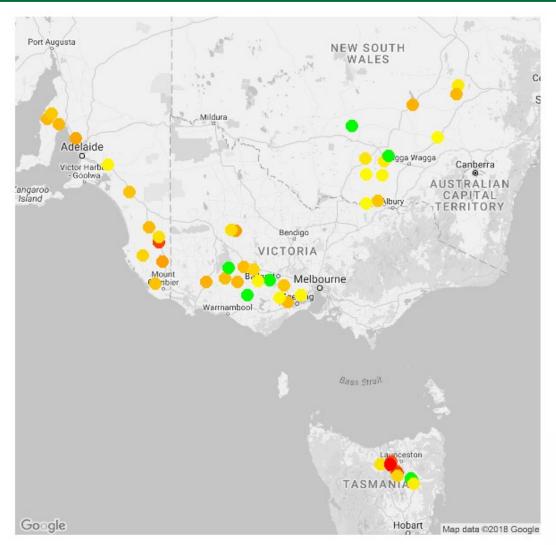
- 1. Field failure
- Lab detection of reduced sensitivity of pathogenic strains isolated from the field – baseline sensitivity!
- 3. DNA-level detection of one or more mutations in the pathogen's gene(s) associated with the mode of action of the fungicide



Fungicide resistance in Australian grains crops

resistance was discovered.

Disease and fungicide group


- L, RS, R Barley Powdery Mildew Group 3 (DMI)
- L, RS, R Barley Net Form Net Blotch Group 3
 - L, R Barley Net Form Net Blotch Group 7 (SDHIs)
 - RS, R Barley Spot Form of Net Blotch Group 3
 - RS Wheat Powdery Mildew Group 3
 - L, R Wheat Powdery Mildew Group 11 (strobilurins)
 - RS Wheat Septoria tritici Group 3
 - L Canola Blackleg Group 2 (MAP-kinase)
 - RS Canola Blackleg Group 3
 - L Ascochyta Blight of Lentil Group 1 (MBC)
 - Botrytis Grey Mould of Chickpea Group 1
 - L = Lab detection RS = Reduced sensitivity R = Resistant

Septoria tritici blotch – Fungicide Resistance Survey 2017

 Wide distribution of a Cyp51 mutation (isoform 11) has led to a significant loss of sensitivity to some DMIs

 No changes to the sensitivity to strobilurins or SDHIs

Cpy51.lsoform.11.Fre

75 50

Acknowledgements: Andrew Milgate

Septoria tritici blotch – Fungicide Resistance Survey 2017

Active ingredient	Resistance status
Strobilurins	Effective
SDHIs (Bixafen, Fluxapyroxad)	Effective
Epoxiconazole	Effective
Prothioconazole	Effective
Cyproconazole	Less effective
Flutriafol	Less effective
Tebuconazole	Less effective
Propiconazole	Less effective
Triadimenol	Not effective

Current Field Performance - Barley Fungicides

	Group 3 (DMI) e.g. epoxiconazole, flutriafol, propiconazole, tebuconazole							Group 7 (SDHI)							Group 11 (QoI)						
								e.g	. fluxa	apyro	xad		e.g. azoxystrobin								
	NSW	Qld	SA	Tas	Vic	WA	NSW	Qld	SA	Tas	Vic	WA	NSW	Qld	SA	Tas	Vic	WA			
Barley powdery mildew	✓	✓	✓	√	✓	×	✓	√	√	√	✓	√	✓	√	√	✓	✓	✓			
Net form of net blotch	✓	✓	✓	√	✓	×	✓	√	×	✓	✓	√	✓	√	√	✓	✓	✓			
Spot form of net blotch	✓	✓	√	√	✓	×	✓	√	√	✓	✓	√	✓	√	√	✓	✓	✓			
Barley scald	✓	✓	√	√	✓	√	✓	√	√	√	✓	✓	✓	√	√	✓	✓	✓			
Barley leaf rust	✓	✓	✓	√	✓	✓	✓	√	√	✓	✓	√	✓	√	√	✓	✓	✓			
Eyespot	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR			
Ramularia leaf spot	✓	✓	√	√	✓	✓	✓	√	√	✓	✓	✓	✓	√	✓	✓	✓	✓			

- ✓ Active
- ✓ Some active compounds compromised be selective based on the resistance profile of your farm or growing region
- Resistance to some or all active compounds avoid if possible, or use only in mixture
- Resistance to most or all active compounds avoid entirely if possible
- **NR** Not registered for this pathogen.

Current Field Performance - Wheat Fungicides

	Group 3 (DMI) e.g. epoxiconazole, flutriafol, propiconazole, tebuconazole							Group 7 (SDHI)						Group 11 (QoI)						
								e.g. fluxapyroxad							e.g. azoxystrobin					
	NSW	Qld	SA	Tas	Vic	WA	NSW	Qld	SA	Tas	Vic	WA	NSW	Qld	SA	Tas	Vic	WA		
Wheat powdery mildew	✓	√	√	√	√	✓	✓	√	√	✓	√	√	✓	√	×	×	×	√		
Septoria tritici blotch	√	√	✓	√	✓	✓	✓	√	√	✓	√	√	✓	√	√	√	√	√		
Septoria nodorum blotch	✓	√	√	√	√	√	✓	√	√	✓	√	√	✓	√	√	√	√	√		
Leaf rust	√	√	√	√	√	✓	✓	√	√	✓	√	√	✓	√	√	√	√	√		
Stripe rust	√	√	√	√	√	✓	✓	√	√	✓	√	√	✓	√	√	√	√	√		
Stem rust	✓	√	√	√	√	✓	✓	√	√	✓	√	√	✓	√	√	√	√	√		
Tan spot (yellow spot)	✓	√	√	√	√	✓	✓	√	✓	✓	√	√	✓	√	√	√	√	√		

- ✓ Active
- ✓ Some active compounds compromised be selective based on the resistance profile of your farm or growing region
- Resistance to some or all active compounds avoid if possible, or use only in mixture
- Resistance to most or all active compounds avoid entirely if possible
- **NR** Not registered for this pathogen.

Fungicide resistance in Qld?

Apparently, no cases of fungicide resistance in Qld – why?

A pilot study supported by the 'Broad Acre Cropping Initiative', a DAF-USQ collaborative project – preliminary results

Broad Acre Cropping Initiative

Mungbean powdery mildew

- Up to 30% yield loss without fungicide treatments (Thompson et al. 2016, GRDC)
- Currently, 2 fungicides available:
 - PER13979 Tebuconazole
 - PER82104 Custodia

 (azoxystrobin + tebuconazole)

Mungbean powdery mildew

- Known to develop resistance to DMIs on other crops in Europe
- In Australia disease is caused by 2 powdery mildew species (Lisa Kelly, Niloofar Vaghefi & Levente Kiss)
 - → Implications for fungicide resistance management?

Research Article

Received: 22 October 2009

Revised: 15 January 2010

Accepted: 2 February 2010

Published online in Wiley Interscience: 29 March 2010

(www.interscience.wiley.com) DOI 10.1002/ps.1948

Sensitivities to DMI fungicides in populations of *Podosphaera fusca* in south central Spain

Francisco J López-Ruiz,^a Alejandro Pérez-García,^{b*}
Dolores Fernández-Ortuño,^a Diego Romero,^b Emilio García,^c
Antonio de Vicente,^b James KM Brown^d and Juan A Torés^a

Abstract

BACKGROUND: Cucurbit powdery mildew elicited by *Podosphaera fusca* (Fr.) U Braun & N Shishkoff limits crop production in Spain. Disease control is largely dependent on fungicides such as sterol demethylation inhibitors (DMIs). Fungicide resistance is an increasing problem in this pathogen. To overcome such risk, it is necessary to design rational control programmes based upon knowledge of field resistance. The aim of this study was to investigate the state of DMI sensitivity of Spanish *P. fusca* populations and provide tools for improved disease management.

Mungbean powdery mildew

 DNA markers associated with DMI resistance checked in several samples, in both powdery mildew species

no mutations

> Field failures observed – samples welcome!

Mungbean powdery mildew - Management

Currently, we recommend two fungicide applications (Melloy et al. unpublished)

- First application at first sign of disease
- Second application two weeks later

But what if you're not sure?

Acknowledgement - A/Prof. Adam Sparks

Use a DSS!

What does it offer?

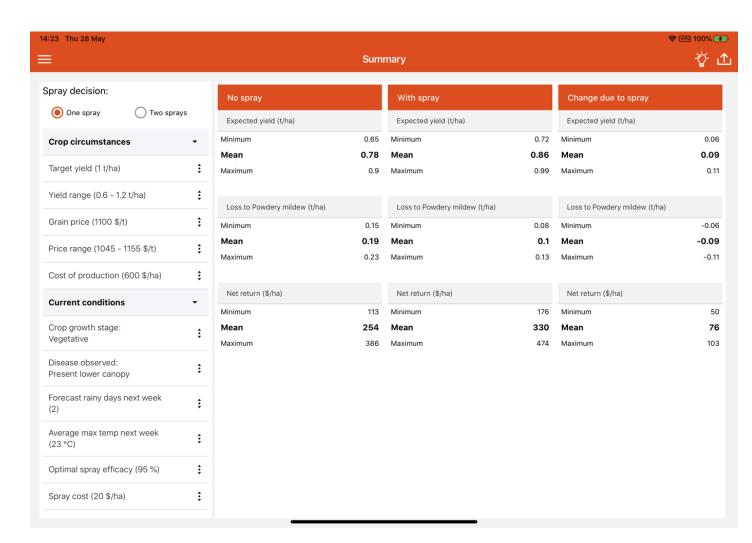
- Alternative to calendar spray programs
- Enhance timing of fungicide sprays to disease development
- Economic benefits (spray reduction)
- Environmental benefits (spray reduction)
- Resistance management strategy

PowderyMildew MBM - Powdery Mildew management app for mungbean

PowderyMildewMBM uses a forecasting model to assist mungbean growers with fungicide application decisions, on a paddock by paddock basis, and the likely economic returns from those decisions.

The user can specify individual paddock data as well as expected weather conditions so that the output relates to their own cropping circumstances.

To download the PowderyMildewMBM App, click on the App store link below from your iPad, or the Google play link below from your Android tablet.



PowderyMildew MBM

What does it look like?

A clear and easy to use set of questions are presented on your Android or iPadOS tablet for you to answer.



PowderyMildew MBM

How does it work?

A possible use case showing the Net return view, showing the target (entered by the user) and expected (calculated by the app) net return resulting from zero or two fungicide applications

PowderyMildew MBM

Supported by:

Department of **Primary Industries and Regional Development**

Department of Agriculture and Fisheries

Broad Acre Cropping Initiative

DAW00228 - National pathogen management modelling and delivery of decision support

DAW1810 - Disease epidemiology and management tools for Australian grain growers

Fungicide Resistance – Mitigate the Risk!

Single-site mode of action

✓ Rotate & mix chemistries

- Pathogen risk
 - Polycyclic (numerous disease cycles per year)?
 Wigh chara production?

 Reduce disease pressure
 - High spore production?
 - Infects all growth stages of the crop?
 - Does the pathogen have a sexual stage? ✓ Manage the green bridge
 - Do they overwinter?
- Frequent application of the fungicide

To conclude:

Little is known about fungicide resistance in Qld.

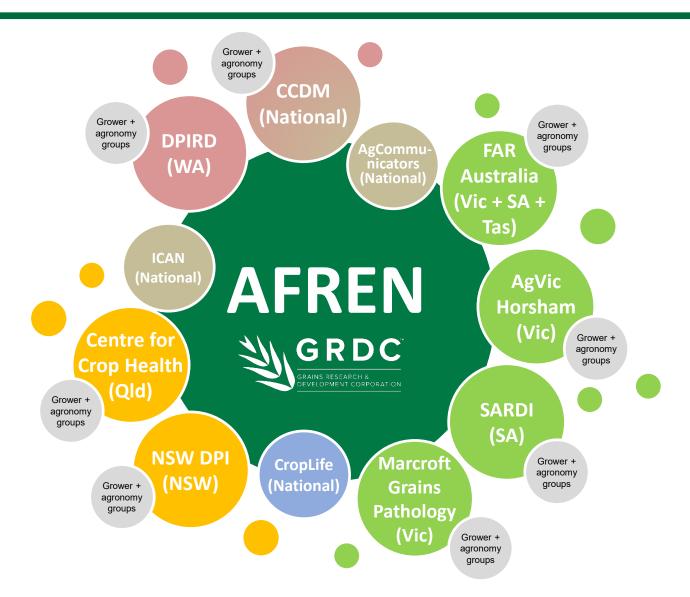
Our recently started projects focused on mungbean powdery mildew so far; other grains pathogens should also be monitored.

Department of Agriculture and Fisheries

Broad Acre Cropping Initiative AUSTRALIAN
FUNGICIDE RESISTANCE
EXTENSION NETWORK

Find out more:

Levente.Kiss@usq.edu.au


0473524788

Twitter: @ILSE_USQ / Facebook: @ILSEUSQ

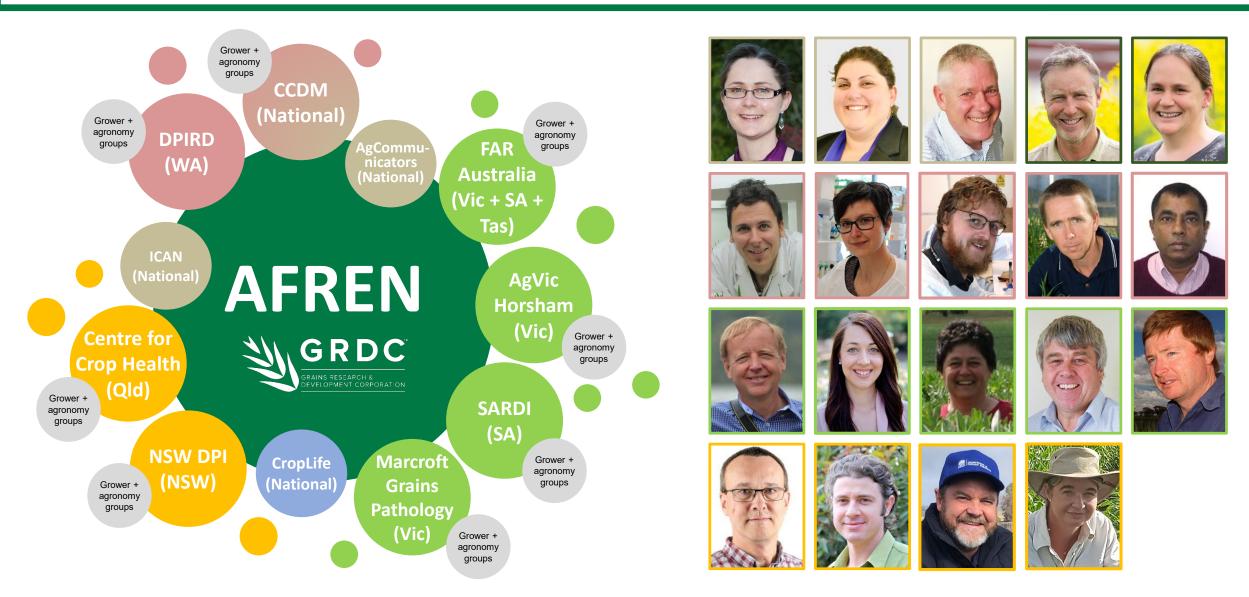
Acknowledgements

Lisa Kelly – DAF Qld

Andrew Milgate - NSW DPI

Adam Sparks – USQ

Niloofar Vaghefi – USQ



Australian Fungicide Resistance Extension Network

Connect with AFREN

Fungicide resistance management guide

Workshops, info sessions & webinars

Factsheets, updates & email alerts

■ HRZ – 4 Aug

■ WA – TBD

Vic - TBD

Prof. Levente Kiss - (07) 4687 5846; levente.kiss@usq.edu.au
Dr Steven Simpfendorfer - 0439 581 672;

steven.simpfendorfer@dpi.nsw.gov

Dr Lisle Snyman – 0428 324 932; <u>lisle.snyman@daf.qld.gov.au</u>

If you suspect fungicide resistance, let us know what's happening & help us sample!